
A Polynomial Time Algorithm for
Multivariate Interpolation in Arbitrary

Dimension via the Delaunay Triangulation

Tyler Chang?, Layne Watson, Thomas Lux, Bo Li, Li Xu,
Ali Butt, Kirk Cameron, and Yili Hong

Virginia Polytechnic Institute and State University

March, 2018

? corresponding author: thchang@vt.edu

thchang@vt.edu


Table of Contents



What is the Delaunay Triangulation

I A triangulation of a (finite) set of points P in Rd is a space
filling simplical-mesh, whose elements are disjoint except
along shared boundaries, whose vertices are points in P, and
whose union is the convex hull of P.

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

I The Delaunay triangulation is a special triangulation, often
considered optimal for interpolation purposes.



Uses

I Mesh generation (e.g., for finite element methods)

I Topological data analysis

I Graph theory

I Piecewise linear multivariate interpolation

-5000

-47.8

-4000

-3000

-48 211.8

-2000

211.6

-1000

-48.2
211.4

0

211.2-48.4
211

-48.6 210.8



Uses

I Mesh generation (e.g., for finite element methods)

I Topological data analysis

I Graph theory

I Piecewise linear multivariate interpolation

-5000

-47.8

-4000

-3000

-48 211.8

-2000

211.6

-1000

-48.2
211.4

0

211.2-48.4
211

-48.6 210.8



Interpolation

I Let T(P) be a d-dimensional triangulation of P.

I Let q ∈ CH(P) be an interpolation point, and let S be a
simplex in T(P) with vertices s1, . . ., sd+1 such that q ∈ S.

I Then there exist unique convex weights w1, . . ., wd+1 such
that q = ∑

d+1
i=1 wisi.

Define:

f̂T(q) = f (s1)w1 + f (s2)w2 + . . . + f (sd+1)wd+1.



Definition of the Delaunay Triangulation

The Delaunay triangulation is usually defined as the geometric dual
of the Voronoi diagram. However, the following equivalent
definition is preferred:

Definition

Let C(v,r) denote a sphere of radius r centered at v, and let B(v,r)
denote the corresponding open ball:

C(v,r) := {x ∈ Rd : ‖x− v‖= r}, B(v,r) := {x ∈ Rd : ‖x− v‖< r}.

A Delaunay triangulation DT(P) of n points P⊂ Rd is any
triangulation of P such that for each d-simplex S ∈ DT(P), the
(d−1)-sphere C(v,r) circumscribing S satisfies B(v,r)∩P = /0.



Visual of the Delaunay Triangulation

A triangulation of 5 points in the plane R2 (left) and the Delaunay
triangulation of those same points (right):

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10



Existence and Uniqueness

I Degeneracies:
I If all n points in P lie in some (d−1)-dimensional linear

manifold, then no triangulation can exist.
I If d+2 or more points lie on the same (d−1)-sphere, then

dividing these d+2 points into 2 or more (d+1)-simplices can
be done arbitrarilly, and the Delaunay triangulation is not
unique.

I If neither of the above 2 degeneracies occur, then the points
are said to be in general position, and the Delaunay
triangulation DT(P) exists and is unique.



Computability

I There are many efficient algorithms for computing the two-
and three-dimensional Delaunay triangulation (in R2 and R3)
generally running in O(n logn) time.

I However, in Rd the size of the Delaunay triangulation grows
exponentially! In the worst case: O(nd

d
2 e)!

⇒
I Requires at least O(nd

d
2 e) time to compute;

I Requires at least O(nd
d
2 e) space to store;

I :(



Computability

I There are many efficient algorithms for computing the two-
and three-dimensional Delaunay triangulation (in R2 and R3)
generally running in O(n logn) time.

I However, in Rd the size of the Delaunay triangulation grows
exponentially! In the worst case: O(nd

d
2 e)!

⇒
I Requires at least O(nd

d
2 e) time to compute;

I Requires at least O(nd
d
2 e) space to store;

I :(



Previous attempts!

Many have tried to crack the curse of dimensionality!

I Bowyer-Watson (Bowyer and Watson 1981)

I Quickhull (Barber, Dobkin, and Huhdanpaa, 1996)

I CGAL — Delaunay graph implementation (Boissonnat,
Devillers, and Hornus, 2009)

But ultimately, there’s no getting around the exponential nature of
the problem...



A potential solution

Proposed solution: Instead of computing the whole triangulation,
just compute the part we need!

I Recall the interpolation formula:

f̂T(q) = f (s1)w1 + f (s2)w2 + . . . + f (sd+1)wd+1.

Only dependent on a single simplex S ∈ DT(P) (the simplex
containing q)!

I Can we compute S without computing all of DT(P)?



Necessarry Operations

There are three necessarry operations:

I Grow an initial simplex

I “Flip” a simplex

I Walk to containing simplex



Necessarry Operations

There are three necessarry operations:

I Grow an initial simplex

I “Flip” a simplex

I Walk to containing simplex



Necessarry Operations

There are three necessarry operations:

I Grow an initial simplex

I “Flip” a simplex

I Walk to containing simplex



Necessarry Operations

There are three necessarry operations:

I Grow an initial simplex

I “Flip” a simplex

I Walk to containing simplex



Growing Initial Simplex

Minimize the radius of the initial circumsphere. A greedy algorithm
works!

I Pick initial point from P arbitrarilly (closest point to q is a
good idea)

I Pick second point from P that is closest to q
I Pick third point to minimize the radius of the smallest

circumsphere

I Etc...



Flipping a Simplex

Drop a point, then pick a new point on the “other side” of the
remaining facet to get a new simplex (hopefully “closer” to q)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

1.5

2

2.5

3
p3

p2p1

F

H

p3

p2p1

F

H

p3

p2p1

F

H



Simplex Walk

Flip toward the next point using a “visibility walk”



The Algorithm

I Grow an initial simplex

I Flip “toward” q using a visibility walk

I Once we’ve found the simplex containing q, use the
interpolation formula on the vertices of the simplex!



Time/Space Complexity

Total runtime:

I O(nd4) to compute first simplex

I O(nd3) to compute each “flip”

I Total number of flips seems to be Θ(d logd):

Table : Average number (with a sample size of 20) of Delaunay simplices
computed in a simplex walk for n pseudo-randomly generated points in d
dimensions.

n = 2K n = 8K n = 16K n = 32K
d = 2 3.05 2.90 3.25 3.10
d = 8 23.75 24.75 24.30 23.10
d = 32 95.25 125.60 131.85 150.10
d = 64 171.95 221.85 248.35 280.60



Issues in Stability

I Points could all lie in a (d−1)-dimensional linear manifold
I Nothing to be done: Users should apply dimension reduction

techniques

I d+2 or more points lie in a (d−1)-sphere
I Delaunay triangulation still exists, but is not unique
I Still, compute a Delaunay triangulation

I A price to be paid! Extra computation time spent handling
degeneracies.



Implementation

I A serial numerically stable implementation of the proposed
algorithm has been coded in ISO Fortran 2003.

I Tested for correctness against the standard implementation of
Quickhull.

I Runtimes gathered for pseudo-randomly generated data on a
lab computer:

I Note that Quickhull and other implementations don’t scale
past moderately sized data sets in more than 5 or 6
dimensions, so there is no comparison.



Results

Table : Average runtime in seconds for interpolating at uniformly
distributed interpolation points for n pseudo-randomly generated input
points in 5 dimensions.

n = 2K n = 8K n = 16K n = 32K
32 interp. pts 0.3 s 2.7 s 9.6 s 35.7 s

1024 interp. pts 2.5 s 11.6 s 28.9 s 79.1 s



Results

Table : Average runtime in seconds for interpolating at clustered
interpolation points for n pseudo-randomly generated input points in 5
dimensions.

n = 2K n = 8K n = 16K n = 32K
32 interp. pts 0.2 s 2.2 s 8.4 s 33.0 s

1024 interp. pts 0.2 s 2.5 s 9.2 s 35.2 s



Results

Table : Average runtime in seconds for interpolating at a single point for
n pseudo-randomly generated input points in d-dimensional space .

n = 2K n = 8K n = 16K n = 32K
d = 2 0.1 s 1.7 s 6.8 s 27.0 s
d = 8 0.2 s 2.5 s 9.6 s 37.9 s
d = 32 1.4 s 9.5 s 29.7 s 101.1 s
d = 64 13.2 s 60.1 s 138.6 s 349.1 s



Conclusion and Future Work

By taking advantage of the interpolation problem structure we are
able to make this previously exponentially complex problem
extremely scalable!

In future work, these same techniques could be applied to other
problems that use Delaunay triangulations (including Voronoi
diagrams).



QUESTIONS?


	Introduction
	What is the Delaunay Triangulation?
	How is it useful?

	Background
	Formal Definition
	Challenges in High Dimensions
	Previous Works

	A New Algorithm
	Addressing challenges
	Necessarry Operations
	The New Algorithm

	Results and Conclusion

