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Motivation

Regression and interpolation are problems of considerable 
importance that find applications across many fields of science.
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Regression and interpolation are problems of considerable 
importance that find applications across many fields of science.

Pollution and air quality analysis 
Energy consumption management 
Student performance prediction

These techniques are applied here to:

High performance computing file input/output (HPC I/O) 
Parkinson's patient clinical evaluations  
Forest fire risk assessment

!2



Problem Formulation
Given

underlying function f : ℝd ⇾ ℝ 
data matrix Xn × d with row vectors x(i)

 ∈ℝd 
response values  f (x(i)) for all x(i)  
matrix f (X) has rows  f (x(i))
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data matrix Xn × d with row vectors x(i)

 ∈ℝd 
response values  f (x(i)) for all x(i)  
matrix f (X) has rows  f (x(i))

Generate a function g: ℝd ⇾ ℝ such that:

Interpolation 
    g(x(i)) equals f (x(i)) for all x(i)

Approximation  
    g has parameters P and is the  
    solution to minP ║ f (X) - g(X)║
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Box Splines

Proposed by C. de Boor as an extension of B-Splines into 
multiple dimensions (without using tensor products).
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Max Box Mesh (MBM)
Properties 

Largest max norm 
distance from anchor to 
edge of support.


Not always a covering for 
the space. 

Construction Complexity 

For each box (n)

Distance to all (nd)  
For each dimension (2d)


Sort distances (n log n)  

!(n2d log n)
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Iterative Box Mesh (IBM)
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Properties 

Built-in bootstrapping used 
to guide construction.


Always a covering for the 
space by construction.  

Construction Complexity 

Until all points are added (n)

Identify boxes containing 
new anchor to add (n)

Shrink boxes containing 
new anchor along all 
dimensions (d) 

!(n2 + nd)



Voronoi Mesh (VM)

!7

Properties 

Naturally shaped geometric 
regions (not forcibly axis 
aligned)


Always a covering for the 
space by construction.


Construction Complexity 

!(n2d)

Prediction Complexity 

For each cell anchor (n)

For each other anchor, 
compute distance (nd)


!(n2d)



Fitting and Bootstrapping
Fitting

Evaluate all basis functions in the mesh at all points n.
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Fitting and Bootstrapping
Fitting

Evaluate all basis functions in the mesh at all points n.

When “c” is the number of control points used for a mesh, using an (n × c) 
matrix A of basis function evaluations at all points, solve the least squares 
problem A x = f (X) with cost !(nc2 + c3).

Bootstrapping

Initialize mesh only using the most central point
Fit mesh and evaluate error at all other points
Add (batch of) point(s) with largest error to mesh
If average error is not below error tolerance, repeat

Increased cost up to !(n)
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Testing and Evaluation: Data
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Testing and Evaluation: Data

High Performance Computing File I/O 
     n = 532, d = 4 
   predicting file I/O throughput
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High Performance Computing File I/O 
     n = 532, d = 4 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Forest Fire 
     n = 517, d = 12 
   predicting area burned

Parkinson’s Clinical Evaluation  
     n = 468, d = 16 
   predicting total clinical “UPDRS” score



Time to Fit (y-axis) 
versus Error Tolerance (x-axis)
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Time to Fit (y-axis) 
versus Error Tolerance (x-axis)

!10

��� ��� ��� ���

�

�

�

�

��� ��� ����

��� �/� ������ ���� ����������

��� ��� ��� ���

�

�

�

�

��������� ��� ����

��� ��� ��� ���

�

�

�

�

��

��
������� ����

Optimal Tolerance & Accuracy



Average Relative Testing Error (y-axis) 
 versus Relative Error Tolerance (x-axis)
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Histograms of Signed Relative Error
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Summary of Contributions
Three techniques were proposed: 
   Max Box Mesh, Iterative Box Mesh, and Voronoi Mesh


Each is theoretically straightforward, flexible, and suitable for 
applications in many dimensions.
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Future Work
Alternative smoothing methods may be preferred that scale 
better with the number of data points.


Further theoretical and empirical comparisons may be done 
against more widely used statistical / ML techniques.


